A Rotationally Invariant Blockmatching Strategy Improving Image Denoisingwith Non-local Means
نویسندگان
چکیده
We propose a rotationally invariant similarity measure as a modification of the well-known block matching algorithm for finding similar regions in an image or an image sequence. This algorithm can find similar patches even if they appear in several rotated or even mirrored instances. We demonstrate the application of this approach to enhance the quality of the non-local means algorithm for image denoising. For this filtering method, we also introduce a locally adaptive way of choosing the parameters. Numerical examples show that both modifications lead to a visible and measurable qualitative improvement of the denoising results.
منابع مشابه
Adaptive K-Means Clustering For Improving Non- Local Means Filtering
Recording devices whether analog or digital, have traits which make them susceptible to noise. In selecting a noise reduction algorithm, one must weigh several factors. Image denoising is defined as a method to recover a true image from an observed noisy image and is applied in display systems to improve the quality of image. One of the popular denoising methods, NLM, produces the quality of im...
متن کاملMRI noise estimation and denoising using non-local PCA
This paper proposes a novel method for MRI denoising that exploits both the sparseness and self-similarity properties of the MR images. The proposed method is a two-stage approach that first filters the noisy image using a non local PCA thresholding strategy by automatically estimating the local noise level present in the image and second uses this filtered image as a guide image within a rotat...
متن کاملA New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA
Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...
متن کاملRotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM
We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent ...
متن کاملCompact rotation invariant descriptor for non-local means
Non-local means is a recently proposed denoising technique that better preserves image structures than other methods. However, the computational cost of non-local means is prohibitive, especially for large 3D images. Modifications have previously been proposed to reduce the cost, which result in image artefacts. This paper proposes a compact rotation invariant descriptor. Testing demonstrates i...
متن کامل